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Fluid Structure Interaction of Parachutes in Supersonic 
Planetary Entry  

Anita Sengupta*  
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 

A research program to provide physical insight into disk-gap-band parachute operation 
in the supersonic regime on Mars was conducted. The program included supersonic wind 
tunnel tests, computational fluid dynamics and fluid structure interaction simulations. 
Specifically, the nature and cause of the “area oscillation” phenomenon were investigated to 
determine the scale, aerodynamic, and aero-elastic dependence of the supersonic parachute 
collapse and re-inflation event. A variety of non-intrusive, temporally resolved, and high 
resolution diagnostic techniques were used to interrogate the flow and generate validation 
datasets.  The results of flow visualization, particle image velocimetry, load measurements, 
and photogrammetric reconstruction will be presented. Implications to parachute design, 
use, and verification will also be discussed. 

Nomenclature 
Do = Parachute nominal diameter 
d = Command module maximum diameter 
x/d = Non-dimensional trailing distance 
CD = Drag coefficient 
Q = Dynamic Pressure 
Re = Reynolds number 
 = Angle of attack 
Tinf = Free stream temperature 
 = Density 
 = Viscosity 
Tinf = Free stream temperature 
So = Parachute nominal area 
ti = Inflation time 

I. Introduction 
he aerodynamic decelerator is a critical element of Entry, Descent, and Landing (EDL) aerospace systems. The 
most common implementation of an aerodynamic decelerator, in both Earth and extraterrestrial applications, is 

the parachute. A parachute is a drag device constructed from high strength-to-weight textile materials with 
application in the subsonic to supersonic regime. Parachutes are typically used to decelerate the payload to low 
subsonic speeds enabling separation of vehicle stages, initiation of retro-propulsive terminal descent, or to provide a 
safe terminal velocity for landing. These functions can be accomplished with a single parachute or multi-chute 
systems according to the mission architecture. 

Parachutes are regularly used in the subsonic regime for sport and military parachuting, aerial delivery, aircraft 
escape, military recovery systems, cargo drops, aircraft landing deceleration, and Earth re-entry systems. The 
supersonic use of parachutes has been limited, however, due to performance, stability, and structural concerns 
associated with this regime1,2. Supersonic uses of parachutes include missile recovery, Mars entry-systems, and 
ballistic nose cone recovery 3. A known instability exists for operation above Mach 1.5, a result of the fluid-
structure-interaction between the flow-field and canopy fabric 4,5. The supersonic instability has perplexed the 
decelerator community for the past several decades. It is only recently that this mystery has been solved, in support 
of near-term missions to Mars that have payload requirements which necessitate application of large-scale 
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supersonic aerodynamic decelerators.  Recent experimental and analytical work with subscale parachutes in 
supersonic flight has shown that the instability is driven by aerodynamic coupling of the parachute bow-shock and 
fore-body wake, and is dependent on Mach, Reynolds number, and proximity to and shape of the fore-body6,7.  The 
shock-wake interactions affect the internal pressure distribution of the canopy, resulting in localized fabric collapse 
and re-inflation events (Fig. 1).  
. 

II. Background  
Supersonic use of aerodynamic decelerators for planetary entry was investigated extensively in 1960’s and 1970’s 

by the National Aeronautics and Space Administration (NASA) and is summarized in Table 1. The Planetary Entry 
Parachute Program (PEPP), Supersonic Planetary Entry Decelerator Program (SPED), and Supersonic High Altitude 
Parachute Experiment (SHAPE) conducted a series of Earth, high-altitude, supersonic flight tests for various 
parachute types (Ring Sail, Disk-Gap-Band, Cross) from 9 to 26 m in nominal diameter 8,9. Following those efforts, 
in 1972, NASA conducted the Balloon Launched Decelerator Test (BLDT) program, intended to flight-qualify the 
parachute system for the upcoming Viking Lander mission to Mars. Through a series of four flight tests, the BLDT 
qualified a 16.1-m Disk-Gap-Band (DGB) parachute for use up to Mach 2.2 and 700 Pa 10,5. In 1976, two Viking 
Landers, launched one month apart, were sent to Mars and successfully deployed their parachutes at Mach 1.1. They 
deployed at a lower Mach than the qualification limit, primarily due to a lack of knowledge of the Martian 
atmosphere. Twenty years passed before “supersonic” planetary-entry parachutes were used again. In 1997, the 
Mars Pathfinder mission successfully deployed a 12.7-m DGB parachute at Mach 1.7. In 2004, the two Mars 
Exploration Rover spacecraft deployed 14.1 m DGB parachutes at Mach 1.8 and 1.9 respectively. In 2004, the 
Huygen’s Probe deployed a staged DGB parachute system at Mach 1.5 (2.6-m pilot, 8.3-m main, 3-m drogue) for its 
descent through Titan’s atmosphere. In 2008, the Mars Phoenix Scout 
mission deployed an 11.7-m DGB parachute at Mach 1.9.  All of these 
parachute flights were successful and employed a deployment Mach 
number and nominal diameter within the BLDT heritage qualification11.  

In 2012, the Mars Science Laboratory (MSL) mission will deploy a 21.5-
m DGB parachute at up to Mach 2.3 and 750 Pa at an altitude of 10km on 
Mars. These deployment conditions are just beyond the existing Viking 
qualification limit. In the absence of a full-scale supersonic test, an 
analytical understanding of the scale and Mach dependent, aero-structural 
response of the parachute is needed for its qualification. A two year 
research program was conducted to provide the needed physical insight into 
the scale, material, structural, and aero-elastic dependence of parachute 
operation in the supersonic regime12. A 2.1% of full-scale rigid parachute 
and 4% of full scale flexible parachute were tested in supersonic wind 
tunnels to determine the fluid structure interaction of the parachute with the 
70-deg sphere cone entry vehicle wake.  Details on the experimental techniques and computational developments 
can be found in references 13,14, and 15. The findings of that program will be presented in this paper in terms of 
Mach number, Reynolds number, geometric, and structural dependencies of DGB parachute operation in the 
supersonic regime.  
  

Table 1. Parachute parameters 
explored by the PEPP, SHAPE, SPED, 
and Viking BLDT program. 

Parameter 
Range 

Explored 

d/Do 0.2 - 0.3 

x/d 4 - 10 

Mach 0.5 to 3.0 

Re 105 – 106 

Q (Pa) 300-1000  

CD 0.3-0.7 

skirt 

canopy 
gap 

suspension 
lines 

apex 

Fig. 1. (Left) Full-scale 21.5 m DGB parachute subsonic flight test on Earth. (Right) Subscale 0.8 m DGB. 
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III. Results and Findings 
 

Supersonic parachute aerodynamics were first investigated with subscale wind tunnel tests of ribbon parachutes 
from Mach 1.5 to 3 2. These studies revealed lateral and inflation instabilities as a function of Mach number and 
canopy porosity. The implications of these instabilities became obvious following the supersonic flight tests of the 
PEPP, SHAPE, SPED, and Viking BLDT programs. These flight tests revealed a supersonic breathing phenomenon 
that manifested at Mach numbers above 1.5 for parachutes flown in the wake of a “bluff body entry-vehicle. The 
instability, referred to as “area oscillations“, is characterized by periodic collapse and re-inflation events that result 
in dynamic loading, projected area variation, and, in some cases parachute structural damage or failure (Fig. 2).  The 
test programs of this era explored a large range of geometric and aerodynamic parameters, as summarized in Table 
1. But a definitive aerodynamic basis of the area oscillation was never ascertained. This was largely due to the high 
frequency nature of the event and limited high-speed diagnostics and computational fluid dynamic capabilities at the 
time. 
 
Recent experimental and 
computational studies, 
conducted in support of the 
next generation of Mars 
planetary-entry missions, 
have explored the 
aerodynamics of parachutes 
in supersonic flow. 
Subscale rigid and flexible 
DGB parachute 
experiments have revealed 
that the supersonic 
instability is the result of 
the fluid structure 
interaction of the coupling 
of the entry-vehicle wake 
to parachute bow-
shock13,14. The momentum deficit of the subsonic wake causes the parachute’s bow-shock to change in shape, move 
forward, and reduce mass flow into the canopy. During this time the canopy depressurizes and partially collapses, 
disrupting the primary bow-shock ahead of the canopy. The canopy then re-pressurizes and the bow shock is re-
established. This process repeats cyclically at a frequency on the order of the acoustic frequency. A direct 
comparision of the flow-field of a rigid parachute with and without an entry-vehicle wake is shown in Fig. 3. In the 
absence of an upstream payload-wake, the bow-shock, pressure distribution inside of the canopy, and drag force are 
essentially constant. When a the entry-vehicle is inserted into the flow-field, the unsteadiness generated by the wake 
interaction is obvious (right hand image). In this case the bow shock oscillates and changes shape and the RMS drag 
is up to 50% of mean value. For the flexible parachute with an entry-vehicle, the flow-field is similar. A high-speed 
shadowgraph sequence of a flexible 0.8-m DGB parachute at Mach 2.0 is shown in Fig. 4. The oscillatory motion of 
the bow shock is clear. Also evident are shocks generated by the suspension lines (section 3.G).  
 

Bow-shock 

Rigid 
Parachute 

Fig. 2. Fig. 2. Images of the supersonic instability known as “area oscillations” (from left to right) at 
Mach 2.0, 2.2, and 2.5 for a 0.8-m DGB parachute 21. 

Fig. 3. Shadowgraph images comparing the effect of the entry-vehicle wake on 
the bow-shock just upstream of a 0.5-m rigid parachute at Mach 2.0. The left 
image has no entry vehicle. In the right image a 70-deg sphere-cone is located 10 
entry-vehicle diameters upstream of the parachute 7. The flow direction is from 
left to right. 
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Table 1. Comparison of subsonic and supersonic load and loss factors 3. 

 
Aerodynamic Regime 

Load Factors Loss Factors 
Unsymmetric 

Load 
Dynamic 
Load (Cx) 

Abrasion Fatigue 

Subsonic 1.0-1.1 1-1.1 0.97-1.0 0.95-1.0 

Supersonic 2.0-2.5 2.0-2.5 0.9 0.9 

 
 

F. Parachute Performance 
Parachute performance is typically gauged in terms of 
drag and stability. Measurements of parachute drag as 
a function of Re and Mach number are shown in Fig. 
13.  The test parachute was flown in the wake of an 
entry vehicle with a d/Do of 0.21 and x/d of 10 
(Sengupta et. al. 2009a). Drag coefficient reduces with 
increasing Mach number, which is consistent with 
bluff-body flows. Drag coefficient does not appear to 
vary with Reynolds number, however, in the range of 
105 to 106. This is a key finding as Reynolds number 
variation was achieved via dynamic pressure 
variation. Fabric porosity variation with dynamic 
pressure was previously thought to be the driver of 
the supersonic instability. This does not appear to be 

the case. As discussed earlier, the contribution of 
turbulence is due to the energy content of the wake 
and resultant unsteadiness of the flow field.  
 
Parachute stability is characterized by the trim angle it 
experiences during flight. The wind tunnel testing of 
subscale DGB parachutes indicates a trim angle 
excursion of 4 to 8 degrees from Mach 2 to 2.5. This 
range of variation is similar to that of the subsonic 
variation, albeit at a high coning frequency. 

G. Suspension Line Interaction 
The parachute suspension-lines can generate their 
own shocks, generating large density disturbances, as 
can be seen in shadowgraph sequence of Fig. 14.  
Correlation of high-speed video and shadowgraph 
data reveal that suspension-line shocks are generated 
when the canopy starts to collapse. The suspension-
line shocks creep up the lines until they intersect with 
the primary bow-shock. The aerodynamic interaction 
with bow-shock tends to exacerbate the bow-shock 
dynamics, contributing to the bow-shock disruption 
and area oscillation. The subscale parachutes used in 
the wind tunnel test program had a line thickness to diameter ratio similar to that of the Viking BLDT era 
parachutes. However, the Viking BLDT parachutes have approximately six times thicker (Dacron) suspension-lines 
as compared to modern day Kevlar line parachutes of the same size (Dickenson et al., 1972). This is a critical 
finding in that the thickness of the suspension-lines may play a role in the severity of the supersonic instability, with 
modern day parachutes having a reduced suspension-line interaction and potentially less severe dynamic loading.  
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field becomes unsteady and the parachute responds with the area oscillation process. The mechanism discovered is 
the turbulent wake coupling to the parachute’s bow-shock causing it to change shape and standoff distance, resulting 
in depressurization of the canopy and resultant partial collapse. Following disruption of the bow shock the canopy 
re-pressurizes and the process repeats itself in a cyclical manner. A critical finding is the effect of suspension line 
shocks on the bow-shock disruption, adding to the severity and frequency of the collapse events and dynamic 
loading. Mach and Reynolds dependence of the flow field was also explored over the range of Mach 2 to 2.5.  Flow-
field unsteadiness is directly related to the energy content of the wake and proximity to the canopy mouth. 
Measurements of parachute performance were also obtained. Drag efficiency decreases monotonically with Mach 
number but does not appear to depend on Reynolds number to first order. Dynamic loading, lateral motion, and 
fabric dynamics of the parachute increase with Mach and Reynolds number.  These factors play a critical role in the 
design and test of parachutes for supersonic use. The parachute’s response to the aerodynamic environment is 
primarily based on its coupling to entry-vehicle wake. The rigid parachute experiment verified that the entry-vehicle 
wake is the source of the supersonic instability. Values derived from the subscale wind tunnel environment also 
compare surprisingly well with the Viking BLDT flight test data. Therefore, non-dimensional aerodynamic and 
geometric scaling parameters are valuable metrics in understanding the physics of supersonic parachute operation.  
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